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Everybody talks about the weather — Everybody talks about the weather — 

But nobody does anything about it.But nobody does anything about it.

– Mark Twain– Mark Twain



QUESTIONS ABOUT CLIMATE CHANGE

Are atmospheric CO2  and other greenhouse gases increasing?
Why?
What human or other activities are responsible?

Is Earth’s temperature increasing?
Why?
Can temperature increase be quantitatively understood and

related to causes?

What future temperature increases (and other climate changes)
can be expected?
What is the uncertainty?

What is the “take-home” message regarding present
understanding of climate change?
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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC
RADIATION

Energy per area per
time

Power per area

Unit:
Watt per square meter
W m-2



GEOGRAPHICAL VARIATION OF ATMOSPHERIC RADIATION
Annual average radiative flux at top of atmosphere, W m-2

Emitted thermal infrared Reflected shortwave
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CERES (Clouds and Earth’s Radiant Energy System satellite, March, 2000 - May, 2001



RADIATIVE FORCING OF CLIMATE CHANGE

A change in a radiative flux term in the Earth’s radiation
budget, ∆F, W m-2.

Working hypothesis:
On a global basis radiative forcings are additive and
fungible.

The radiative forcing concept underlies much of the
assessment of climate change over the industrial period.
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration and infrared radiative forcing 
over the last thousand years
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GREENHOUSE GAS MIXING RATIOS OVER THE INDUSTRIAL PERIOD
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GREENHOUSE GAS FORCINGS OVER THE INDUSTRIAL PERIOD
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Level  of Scientific Understanding
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IS EARTH’S TEMPERATURE
INCREASING?



GLOBAL TEMPERATURE TREND OVER THE INDUSTRIAL PERIOD
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OCEAN SURFACE TEMPERATURE ANOMALY

Unknown


Unknown


Unknown


Unknown
Rayner et al., 2005



OCEAN SURFACE TEMPERATURE ANOMALY

Unknown
Rayner et al, 2005



RETREAT OF MID-LATITUDE GLACIERS

South Cascade Glacier, Washington

1928 2000



INCREASES IN CO2 OVER THE
INDUSTRIAL PERIOD



ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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ATMOSPHERIC CO2 EMISSIONS
Time series 1700 - 2003
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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LAND USE CARBON EMISSIONS BY SOURCE REGION

1000 Tg = 1 Pg
    = 1015 g,
Equivalent to
    0.47 ppm

Carbon flux estimated as land area times carbon emissions associated with
deforestation (or uptake associated with afforestation).

United States dominates emissions before 1900 and uptake after 1940.



ATMOSPHERIC CO2 EMISSIONS
Time series 1700 - 2003
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Prior to 1910 CO2 emissions from land use changes were dominant.

Subsequently fossil fuel CO2 has been dominant and rapidly increasing!



ATTRIBUTION OF INCREASE IN
ATMOSPHERIC CO2

Comparison of cumulative CO2 emissions from fossil fuel combustion 
land use changes with measured increases in atmospheric CO2.
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ATTRIBUTION OF INCREASE IN
ATMOSPHERIC CO2

Comparison of cumulative CO2 emissions from fossil fuel combustion and
land use changes with measured increases in atmospheric CO2.
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ATTRIBUTION OF INCREASE IN
ATMOSPHERIC CO2

Comparison of cumulative CO2 emissions from fossil fuel combustion and
land use changes with measured increases in atmospheric CO2.
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Prior to 1970 the increase in atmospheric CO2 was dominated by
emissions from land use changes, not fossil fuel combustion.



ATTRIBUTION OF ATMOSPHERIC CO2
Comparison of CO2 mixing ratio and forcing from

fossil fuel combustion and land use changes
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ATTRIBUTION OF ATMOSPHERIC CO2
Comparison of CO2 mixing ratio and forcing from

fossil fuel combustion and land use changes
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CO2 from land use emissions – not fossil fuel combustion – has
been the dominant contribution to atmospheric CO2 and forcing over
the last century. This conclusion is not sensitive to the parameters.



INCREASE OF CO2 EMISSIONS IS ROUGHLY
EXPONENTIAL
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e-folding time = 40 yr

The time constant for emissions growth is well less than time constant for
decrease of excess CO2.

The mean age of fossil fuel CO2 in the atmosphere is ~ 40 years.
The climate influence of excess fossil fuel CO2 already in the atmosphere

will continue well into the future.



OBSERVATIONS ABOUT CO2

The residence time of excess atmospheric CO2 is ~100 years.

CO2 from land use emissions was the dominant contribution to
excess CO2 and its climate forcing over the last century.

CO2 from fossil fuel combustion now the dominant
contribution to excess CO2 and its climate forcing.

Fossil fuel CO2 emissions are increasing with time constant of
~40 years.

Excess CO2 now in the atmosphere is ~40 years’ emissions.

Most of the forcing of present excess CO2 lies ahead.



Looking to the
Future . . .



Prediction is difficult,
  especially about the future.

– Niels Bohr



PROJECTIONS OF FUTURE CO2, TEMPERATURE, AND SEA LEVEL

                

                            

Contributors to uncertainty in future temperature include emissions,
concentrations, and Earth's climate sensitivity.



CLIMATE RESPONSE
The change in global and annual mean temperature,
∆T, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature depends on
the magnitude of the forcing, not its nature or its
spatial distribution.

∆T = λ F

CLIMATE SENSITIVITY

The change in global and annual mean temperature per
unit forcing, λ, K/(W m-2).



TOP-LEVEL QUESTION IN
CLIMATE CHANGE SCIENCE

• How much will the global mean temperature change?
∆∆∆∆T = λλλλ F

where F is the forcing and λ is the climate sensitivity.

- A  forcing is a change in a radiative flux component,  W m-2.

- Forcings are thought to be additive and fungible.

• What is Earth’s climate sensitivity?
- U.S. National Academy Report (Charney, 1979):

“ We estimate the most probable global warming for a doubling of CO2 to
be near 3 degrees C, with a probable error of plus or minus 1.5 degrees.

- Intergovernmental Panel on Climate Change (IPCC, 2001):

“ Climate sensitivity [to CO2 doubling] is likely to be in the range
1.5 to 4.5˚C.

steve
= 4 W m

steve
-2

steve


steve
F

steve


steve
This level of uncertainty is not very useful for policy planning.



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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HOW CAN CLIMATE SENSITIVITY BE DETERMINED?

Climate sensitivity λ = ∆T F/

• Climate models evaluated by performance on prior climate change,
and/or

• Empirical determination from prior climate change.

• Either way, ∆T and F must be determined with sufficiently small
uncertainty to yield an uncertainty in λ that is useful for informed
decision making.



BILLIARD BALL TEMPERATURE
SENSITIVITY

Climate sensitivity evaluated according to
the Stefan-Boltzmann radiation law

Dependence of emitted flux on temperature: F T= σ 4

Sensitivity of flux with temperature: 
dF

dT
T= 4 3σ

Sensitivity of temperature with flux: λ σ≡ = −dT

dF
T( )4 3 1

For T = 288 K (15 ˚C or 59 ˚F)  λ = 0 18. ) K /  (W m-2

Unknown




CLIMATE CHANGE SENSITIVITY
Summary of 15 Current Climate Models

Quantity, Unit Mean Standard
Deviation

Range

λ, K/(W m-2) 0.87 0.23 0.5 - 1.25

∆T2×, K 3.5 0.9 2 - 5

IPCC Climate Change 2001, Cambridge University Press, 2001

Unknown


Unknown


Unknown
Why do climate models exhibit higher sensitivity?

Unknown
Positive Feedback



EMPIRICAL CLIMATE SENSITIVITY

Greenhouse forcing over the industrial period is 2.5 W m-2

Temperature increase over the industrial period is 0.6 K.

Empirical Sensitivity:

λ = = =dT

dF

0 6
0 24

.
.

 K

2.5 W m
 K /  (W m )-2

-2         or        ∆T2× = 1 K

Unknown


Unknown
Why is this estimate so low?

Unknown
Thermal lag of climate system?

Unknown
Other forcings?



TIME CONSTANTS OF EARTH’S
CLIMATE SYSTEM

Consider a perturbation to the climate system

How long does it take for the system to adjust to the new state?

There are many time constants:

Minutes. It gets cooler when the sun goes “behind a cloud.”

Hours. It is cooler at night than during the day; but there is a
lag.

Months. It is colder in winter than in summer, but there is a lag.

Years. Thermal buffering of the ocean mixed layer.

Thousands of years. The deep oceans.

Millions of years. Thermal mass of the whole planet (Kelvin
and the age of Earth)



TIME CONSTANT OF EARTH’S
CLIMATE SYSTEM BASED ON THE

OCEAN MIXED LAYER

For the heat content of the climate system given by

dH

dt
J T= −in σ 4

the relaxation time constant for a perturbation from an initial
temperature T0 is

τ = CT

J
0

04

where C is the heat capacity of the system.



HEAT CAPACITY OF THE SYSTEM
Lemma: the heat capacity of the atmosphere << the heat

capacity of the ocean mixed layer.

The mass of the atmosphere = the mass of the first 10 m of
water.

The heat capacity of the atmosphere = the heat capacity of the
first 2.5 m of water.

The depth of the ocean mixed layer ≈ 100 m, so the heat
capacity of the atmosphere ≈ 1/40 that of the ocean mixed
layer.

So just consider the heat capacity of the ocean mixed layer

For zml = 100 m, the heat capacity of the system is

C c z= = ×w w ml
-2 J mρ 4 19 108.



TIME CONSTANT OF THE CLIMATE SYSTEM

For zml = 100 m, τ ρ= = =CT

J

c z T

J
0

0

0

04 4
4w w ml  years.

[This does not take into account any flux of excess heat into the
deep ocean or solid earth.]

Climate response is essentially instantaneous.

This justifies inferring climate sensitivity from forcing and
temperature response.

We need consider only instantaneous forcing, not integrated
forcing.

This is a very forgiving result!

The warming due to excess CO2 will diminish as the excess
CO2 decays.



WHAT’S MISSING FROM THIS STORY?

RADIATIVE FORCING
BY AEROSOLS
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 May 8  June 2

 June 3  June 11

LIGHT SCATTERING BY ANTHROPOGENIC AEROSOLS, 2000

SEAWIFS images



AEROSOL INFLUENCES ON
RADIATION BUDGET AND CLIMATE

Direct Effect (Cloud-free sky)
Light scattering -- Cooling influence
Light absorption -- Warming influence, depending on surface

Indirect Effects (Aerosols influence cloud properties)
More droplets -- Brighter clouds (Twomey)
More droplets -- Enhanced cloud lifetime (Albrecht)

Semi-Direct Effect
Absorbing aerosol heats air and evaporates clouds



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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ELEMENTS OF AEROSOL FORCING

Forcing depends on amount of material present and on aerosol
microphysical and optical properties (size, single scattering
albedo, ability to nucleate cloud drops).

Amount of material present depends on emissions, atmospheric
chemistry, and removal.

Anthropogenic emissions are associated largely with fossil fuel
combustion (sulfate, soot, secondary organics),  biomass
burning (organics and soot), mineral dust from disturbed
soils.

Removal occurs mainly by precipitation with residence time of
about a week.
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WHY SO LARGE UNCERTAINTY IN
AEROSOL FORCING?

• Uncertainties in knowledge of atmospheric composition

Mass loading and chemical and microphysical properties and cloud
nucleating properties of anthropogenic aerosols, and geographical
distribution.

At present and as a function of secular time.

• Uncertainties in knowledge of atmospheric physics of aerosols

Relating direct radiative forcing and cloud modification by aerosols to
their loading and their chemical and microphysical properties.

steve
The U.S. Department of Energy has initiated a new research program examining aerosol chemistry and physics pertinent to radiative forcing of climate change.



ADDING UP THE FORCINGS
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IMPLICATIONS OF AEROSOL FORCING
• Aerosol negative (cooling) forcing is likely offsetting a

substantial fraction of positive (warming) forcing by
greenhouse gases.

• A substantial fraction of the forcing of 40 years of CO2
emissions is being offset by a week’s worth of aerosol.

• The aerosol forcing is likely responsible for the low apparent
climate sensitivity based on greenhouse gas forcing only.

• It is very likely that the global warming due to CO2 and other
GHG’s is substantially greater than has been experienced
thus far.

• The uncertainty in aerosol forcing and the resultant
uncertainty in total forcing over the industrial period are so
great as to preclude meaningful empirical inference of
climate sensitivity and evaluation of climate models.



SOME CONCLUDING OBSERVATIONS
• GHG concentrations and forcing are increasing. GHGs persist

in the atmosphere for decades to centuries.

• Global mean temperature trends and other indicia point to a
warming world.

• Aerosol forcing is comparable to GHG forcing but much more
uncertain. Aerosols are short-lived in the atmosphere.

• The sensitivity of the climate system is highly uncertain but is
almost certainly substantially greater than is inferred based on
GHG forcing alone.

• Decisions on GHG policy must be made in an uncertain
world. Lack of controls on GHG emissions is also a decision.



DOING SOMETHING ABOUT THE CLIMATE:

Thank you

http://www.ecd.bnl.gov/steve/schwartz.html




